100k Ω Precision-Matched Resistor-Divider in
 SOT23

Abstract

General Description The MAX5490 precision resistor-divider consists of two accurately matched resistors with access to the ends accurately matched resistors with access to the ends and center of the divider. This device offers excellent resistance matching of 0.035\% (A grade), 0.05\% (B grade), and 0.1% (C grade). The MAX5490 provides an extremely low resistance-ratio temperature drift of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(\right.$ typ) over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, and has an end-toend resistance of $100 \mathrm{k} \Omega$. Resistance ratios from $1: 1$ to 100:1 are available. Five standard ratios are available (see Table 1), and custom ratios are also available upon request. The MAX5490 is ideal for precision gain-setting applications where tight resistance matching and low temperature drift are necessary

The MAX5490 is available in a space-saving 3-pin SOT23 package, and is guaranteed over the military $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.

Industrial Process Control
Instrumentation
Precision Gain Setting
Medical Equipment
Automatic Test Equipment
Base Stations

Applications

*See the How to Order section for more details.

Block Diagram

Pin Configuration

TOP VIEW

100k Ω Precision-Matched Resistor-Divider in SOT23

ABSOLUTE MAXIMUM RATINGS

```
Voltage Between P1 and P2.
``` \(\qquad\)
``` .100V
Maximum Current into Any Pin ...................................... \(\pm 1.00 \mathrm{~mA}\)
Continuous Power Dissipation ( \(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\) )
3-Pin SOT23 (derate \(7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}\) above \(+70^{\circ} \mathrm{C}\) )........ 571.4 mW
3-Pin SOT23 ( \(\theta_{J-A}\) )
\(.141^{\circ} \mathrm{C} / \mathrm{W}\)
```

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

$\left(T_{A}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Initial Resistor Ratio Error (Note 2)		MAX5490_A, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.035	\%
		MAX5490_B, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 0.05	
		MAX5490_C, $\mathrm{T}_{\text {A }}=+25^{\circ} \mathrm{C}$			± 0.1	
Resistance-Ratio Temperature Coefficient (Note 3)		1:1 \leq ratio $\leq 10: 1$		1	2	ppm/ ${ }^{\circ} \mathrm{C}$
		10:1 \leq ratio $\leq 25: 1$		2	4	
Absolute Temperature Coefficient of Resistance	TCR	(Note 4)		35		ppm/ ${ }^{\circ} \mathrm{C}$
Voltage Coefficient of Resistance	VCR	(Note 5)		0.1		ppm/V
End-to-End Resistance ($\mathrm{R}_{1}+\mathrm{R}_{2}$)		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	95	100	105	$\mathrm{k} \Omega$
Continuous Working Voltage Between P1 and P2	VP1-P2		-80		+80	V
Continuous Current		IR1, IR2			840	$\mu \mathrm{A}$
P1, P2, P3 Capacitance				2		pF
Maximum Power Rating				67.2		mW
Resistance Ratio Long-Term Stability		2000 hours at $+70^{\circ} \mathrm{C}$		± 0.03		\%
-3dB Bandwidth	$f_{3 d B}$	1:1 ratio (Note 6)		3		MHz
Thermal Noise				45		$\mu \mathrm{V}_{\text {RMS }}$
Current Noise		In accordance with MIL-STD-2020 method 30B		-25		dB

Note 1: The MAX5490 is 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. Specifications over $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ are guaranteed by design and characterization.
Note 2: Testing conditions: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{P} 1-\mathrm{P} 2}=10 \mathrm{~V}$ and 80 V .

Note 3: Resistance-ratio temperature coefficient is defined as $\left|\frac{\Delta\left(\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}\right)}{} \begin{array}{l}\text { For ratios from 25:1 to 100:1, contact factory. }\end{array}\right| \frac{\mathrm{R}_{1}}{\mathrm{R}_{2}} \times \Delta \mathrm{T}$ and is guaranteed by design, not production tested.

Note 4: Absolute TCR is defined as $\left|\frac{\Delta\left(R_{1}+R_{2}\right)}{\left(R_{1}+R_{2}\right) \times \Delta T}\right|$ and is tested at 10 V and 80 V .

100k Ω Precision-Matched Resistor-Divider in
 SOT23

DC ELECTRICAL CHARACTERISTICS (continued)

$\left(T_{A}=-55^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

Note 5: Resistance-ratio voltage coefficient is defined as

$$
\left|\frac{\Delta\left(\frac{R_{1}}{R_{2}}\right)}{\frac{R_{1}}{R_{2}} \times \Delta V}\right| \text { and is guaranteed by design, not production tested. }
$$

Note 6: Calculate bandwidth by using $\frac{1}{2 \pi R C}$, where $C=C_{P 3}$ and $R=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}$.

Typical Operating Characteristics

$\left(\mathrm{V}_{\mathrm{P} 1-\mathrm{P} 2}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

RESISTANCE-RATIO ACCURACY
vs. VOLTAGE

FREQUENCY RESPONSE

100k Ω Precision-Matched Resistor-Divider in SOT23

$\left(\mathrm{V}_{\text {P1-P2 }}=10 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Pin Description

PIN	NAME		
1	P1	R_{1} Connection Terminal	FUNCTION
2	P2	R_{2} Connection Terminal	
3	P3	Set-Point Connection Terminal	

Detailed Description

As shown in the Block Diagram, the MAX5490 consists of two precision, low-ratio-drift resistors with an end-toend resistance of $100 \mathrm{k} \Omega\left(R_{1}+R_{2}\right)$. P3 is the set point of the divider. The maximum working voltage of the MAX5490 is 80 V . This device offers a wide range of resistance ratios $\left(R_{1} / R_{2}\right)$ from 1:1 to $100: 1$ and is ideal for precision operational amplifier gain/attenuation control. A maximum initial ratio accuracy of 0.035% and a low 1 ppm $/{ }^{\circ} \mathrm{C}$ ratio drift enhance system accuracy.

Applications Information

Self-Heating and Error

Applying a voltage across terminals P1 and P2 causes the device to heat up due to power dissipation. In highvoltage applications, consider the error in resistanceratio temperature coefficient caused by self-heating.

The worst-case self-heating occurs when the operating voltage attains its maximum value. Approximate the result of power dissipation under this condition as:

$$
P_{\mathrm{DISS}}=\frac{\left(\mathrm{V}_{\mathrm{MAX}}\right)^{2}}{\mathrm{R}}=\frac{(80 \mathrm{~V})^{2}}{100 \mathrm{k} \Omega}=64 \mathrm{~mW}
$$

The thermal resistance from junction to ambient, $\theta_{\mathrm{J}-\mathrm{A}}$, for a 3 -pin SOT23 package is $141^{\circ} \mathrm{C} / \mathrm{W}$. Calculate the resulting temperature rise as:

$$
\Delta \mathrm{T}=64 \mathrm{~mW} \times 141^{\circ} \mathrm{C} / \mathrm{W}=9.02^{\circ} \mathrm{C}
$$

If the ratio temperature coefficient is $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ (typ), the total error introduced by self-heating is:

$$
9.02^{\circ} \mathrm{C} \times 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}=9.02 \mathrm{ppm}
$$

100k Ω Precision-Matched Resistor-Divider in
 SOT23

Figure 1. Inverting Amplifier Configuration

Figure 3. Buffered Attenuator

Figure 2. Noninverting Amplifier Configuration

Figure 4. Attenuator with Buffer

100k Ω Precision-Matched Resistor-Divider in SOT23

Example Part Numbers

PART NUMBER	RESISTOR-RATIO RANGE	RESISTOR-RATIO ACCURACY (\% MAX)	RESISTOR RATIO

\qquad

100k Ω Precision-Matched Resistor-Divider in
 SOT23

Table 1. Standard Ratios*

PART NUMBER	RESISTOR RATIO	RESISTOR-RATIO SUFFIX	RESISTOR-RATIO ACCURACY (\% MAX)	TOP MARK
MAX5490GA01000-T	$1: 1$	01000	0.035	FZQG
MAX5490GB01000-T	$1: 1$	01000	0.05	FZQH
MAX5490GC01000-T	$1: 1$	01000	0.1	FZQI
MAX5490MA02000-T	$2: 1$	02000	0.035	FZRQ
MAX5490MB02000-T	$2: 1$	02000	0.05	FZRR
MAX5490MC02000-T	$2: 1$	02000	0.1	FZRS
MAX5490TA05000-T	$5: 1$	05000	0.035	FZQJ
MAX5490TB05000-T	$5: 1$	05000	0.05	FZQK
MAX5490TC05000-T	$5: 1$	05000	0.035	FZQL
MAX5490VA10000-T	$10: 1$	10000	0.05	FZQP
MAX5490VB10000-T	$10: 1$	10000	0.1	FZQQ
MAX5490VC10000-T	$10: 1$	10000	0.035	FZQR
MAX5490XA25000-T	$25: 1$	25000	0.05	FZQV
MAX5490XB25000-T	$25: 1$	25000	0.1	FZQW
MAX5490XC25000-T	$25: 1$	25000	FZQX	

*Standard ratios are available for ordering in any quantity. Nonstandard ratios are also available for values between 1:1 to 100:1. A minimum order quantity of 10,000 units is required for nonstandard ratios. Please contact factory for more information.

Table 2. Ratio Ranges

LETTER SUFFIX	RESISTOR-RATIO RANGE
G	1.0 to 1.099
H	1.1 to 1.199
J	1.2 to 1.399
K	1.4 to 1.599
M	1.6 to 1.899
N	1.9 to 2.099
P	2.1 to 2.499
R	2.5 to 2.999
S	3.0 to 3.499
T	3.5 to 4.499
U	4.5 to 5.999
W	6.0 to 8.999
X	9.0 to 13.999
Y	14.0 to 24.999
Z	25.0 to 49.999
	50.0 to 74.999
	75.0 to 100.0

Chip Information

TRANSISTOR COUNT: 0 PROCESS: BiCMOS

100k Ω Precision-Matched Resistor-Divider in SOT23

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information, go to www.maxim-ic.com/packages.)

NaTES:

1. D\&E DO NDT INCLUDE MILD FLASH.
2. MOLD FLASH \quad R PROTRUSIDNS NDT TD EXCEED .15 mm (.006"),
3. CONTRULLING DIMENSIDN: MILLIMETERS.
4. REFERENCE JEDEC TIZ236-VARIATIGN AB.
5. LEADS TI BE CDPLANAR WITHIN 0.10 mm .
6. DIMENSIINS MEASURED AT FLAT SECTIDN DF LEAD BETWEEN 0.08 mm AND 0.15 mm FRGM LEAD TIP.

SECTIUN $b-b$

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.035	0.044	0.890	1.120
A1	0.001	0.004	0.013	0.100
B	0.015	0.020	0.370	0.500
b1	0.012	0.018	0.300	0.450
c	0.003	0.071	0.085	0.180
C1	0.003	0.071	0.080	0.160
D	0.110	0.120	2.800	3.040
E	0.047	0.055	1.200	1.400
e	0.037	BSC.	0.950	BSC.
e1	0.075	BSC.	1.900	BSC.
H	0.083	0.104	2.100	2.640
L	0.015	0.023	0.400	0.600
L1	0.021	REF	0.54	REF
S	0.018	0.024	0.45	0.60
α	0^{-}	$8{ }^{-}$	$0{ }^{-}$	8^{-}

TDP VIEW

FRDNT VIEW

SIDE VIEW

\qquad

